Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(5): e37198, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306523

RESUMEN

INTRODUCTION: X-linked recessive chronic granulomatous disease (XR-CGD) is a severe primary immunodeficiency principally caused by a CYBB (OMIM: 300481) gene variant. Recurrent fatal bacterial or fungal infections are the main clinical manifestations of XR-CGD. PATIENT CONCERNS: In the current case, in vitro fertilization (IVF) associated with preimplantation genetic testing for monogenic disorder (PGT-M) was applied for a Chinese couple who had given birth to a boy with XR-CGD. DIAGNOSIS: Next-generation sequencing-based SNP haplotyping and Sanger-sequencing were used to detect the CYBB gene variant (c.804 + 2T>C, splicing) in this family. INTERVENTIONS: The patient was treated with IVF and PGT-M successively. OUTCOMES: In this IVF cycle, 7 embryos were obtained, and 2 of them were euploid and lacked the CYBB gene variant (c.804 + 2T>C). The PGT results were verified by prenatal diagnosis after successful pregnancy, and a healthy girl was eventually born. CONCLUSION: PGT-M is an effective method for helping families with these fatal and rare inherited diseases to have healthy offspring. It can availably block the transmission of disease-causing loci to descendant.


Asunto(s)
Enfermedad Granulomatosa Crónica , Diagnóstico Preimplantación , Masculino , Embarazo , Femenino , Humanos , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Diagnóstico Prenatal , Fertilización In Vitro , Aneuploidia , NADPH Oxidasa 2/genética
2.
BMC Pregnancy Childbirth ; 24(1): 86, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280990

RESUMEN

BACKGROUND: Couples with balanced chromosome rearrangement (BCR) are at high risk of recurrent miscarriages or birth defects due to chromosomally abnormal embryos. This study aimed to provide real-world evidence of the euploidy rate of blastocysts from couples with BCR using preimplantation genetic testing (PGT) and to guide pretesting genetic counselling. METHODS: A continuous four-year PGT data from couples with BCR were retrospectively analyzed. Biopsied trophectoderm cells were amplified using whole genome amplification, and next-generation sequencing was performed to detect the chromosomal numerical and segmental aberrations. Clinical data and molecular genetic testing results were analyzed and compared among the subgroups. RESULTS: A total of 1571 PGT cycles with 5942 blastocysts were performed chromosomal numerical and segmental aberrations detection during the four years. Of them, 1034 PGT cycles with 4129 blastocysts for BCR couples were included; 68.96% (713/1034) PGT cycles had transferable euploid embryos. The total euploidy rate of blastocysts in couples carrying the BCR was 35.29% (1457/4129). Couples with complex BCR had euploid blastocyst rates similar to those of couples with non-complex BCR (46.15% vs. 35.18%, P > 0.05). Chromosome inversion had the highest chance of obtaining a euploid blastocyst (57.27%), followed by Robertsonian translocation (RobT) (46.06%), and the lowest in reciprocal translocation (RecT) (30.11%) (P < 0.05). Couples with males carrying RobT had higher rates of euploid embryo both in each PGT cycles and total blastocysts than female RobT carriers did, despite the female age in male RobT is significant older than those with female RobT (P < 0.05). The proportions of non-carrier embryos were 52.78% (95/180) and 47.06% (40/85) in euploid blastocysts from couples with RecT and RobT, respectively (P > 0.05). RecT had the highest proportion of blastocysts with translocated chromosome-associated abnormalities (74.23%, 1527/2057), followed by RobT (54.60%, 273/500) and inversion (30.85%, 29/94) (P < 0.05). CONCLUSIONS: In couples carrying BCR, the total euploidy rate of blastocysts was 35.29%, with the highest in inversion, followed by RobT and RecT. Even in couples carrying complex BCR, the probability of having a transferable blastocyst was 46.15%. Among the euploid blastocysts, the non-carrier ratios in RecT and RobT were 52.78% and 47.06%, respectively. RecT had the highest proportion of blastocysts with translocated chromosome-associated abnormalities.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Masculino , Humanos , Femenino , Estudios Retrospectivos , Diagnóstico Preimplantación/métodos , Aneuploidia , Pruebas Genéticas/métodos , Aberraciones Cromosómicas , Cromosomas
3.
BMC Genomics ; 24(1): 521, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667185

RESUMEN

The autosomal dominant form of polycystic kidney disease (ADPKD) is the most common hereditary disease that causes late-onset renal cyst development and end-stage renal disease. Preimplantation genetic testing for monogenic disease (PGT-M) has emerged as an effective strategy to prevent pathogenic mutation transmission rely on SNP linkage analysis between pedigree members. Yet, it remains challenging to establish reliable PGT-M methods for ADPKD cases or other monogenic diseases with de novo mutations or without a family history. Here we reported the application of long-read sequencing for direct haplotyping in a female patient with de novo PKD1 c.11,526 G > C mutation and successfully established the high-risk haplotype. Together with targeted short-read sequencing of SNPs for the couple and embryos, the carrier status for embryos was identified. A healthy baby was born without the PKD1 pathogenic mutation. Our PGT-M strategy based on long-read sequencing for direct haplotyping combined with targeted SNP haplotype can be widely applied to other monogenic disease carriers with de novo mutation.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Diagnóstico Preimplantación , Femenino , Humanos , Lactante , Pruebas Genéticas , Haplotipos , Mutación , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/genética , Polimorfismo de Nucleótido Simple
4.
Front Genet ; 14: 1132404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065489

RESUMEN

Chromosome rearrangement is one of the main causes of abortion. In individuals with double chromosomal rearrangements, the abortion rate and the risk of producing abnormal chromosomal embryos are increased. In our study, preimplantation genetic testing for structural rearrangement (PGT-SR) was performed for a couple because of recurrent abortion and the karyotype of the male was 45, XY der (14; 15)(q10; q10). The PGT-SR result of the embryo in this in vitro fertilization (IVF) cycle showed microduplication and microdeletion at the terminals of chromosomes 3 and 11, respectively. Therefore, we speculated whether the couple might have a cryptic reciprocal translocation which was not detected by karyotyping. Then, optical genome mapping (OGM) was performed for this couple, and cryptic balanced chromosomal rearrangements were detected in the male. The OGM data were consistent with our hypothesis according to previous PGT results. Subsequently, this result was verified by fluorescence in situ hybridization (FISH) in metaphase. In conclusion, the male's karyotype was 45, XY, t(3; 11)(q28; p15.4), der(14; 15)(q10; q10). Compared with traditional karyotyping, chromosomal microarray, CNV-seq and FISH, OGM has significant advantages in detecting cryptic and balanced chromosomal rearrangements.

5.
Front Genet ; 13: 926060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719382

RESUMEN

Preimplantation genetic testing (PGT) has been increasingly used to prevent rare inherited diseases. In this study, we report a case where PGT was used to prevent the transmission of disease-caused variant in a SCID-X1 (OMIM:300400) family. SCID-X1 is an X-linked recessive inherited disease whose major clinical manifestation of immune deficiency is the significant reduction in the number of T-cells and natural killer cells. This family gave birth to a boy who was a hemizygous proband whose IL2RG gene was mutated (c.315T > A, p(Tyr105*), NM_000206.3, CM962677). In this case, Sanger sequencing for mutated allele and linkage analysis based on single-nucleotide polymorphism (SNP) haplotype via next-generation sequencing were performed simultaneously. After PGT for monogenic disorder, we detected the aneuploidy and copy number variation (CNV) for normal and female carrier embryos. Four embryos (E02, E09, E10, and E11) were confirmed without CNVs and inherited variants at the IL2RG gene. Embryo E02 (ranking 4BB) has been transferred after considering the embryo growth rate, morphology, and PGT results. Prenatal genetic diagnosis was used to detect amniotic fluid cells, showing that this fetus did not carry the variant of the IL2RG gene (c.315T > A). Ultimately, a healthy girl who had not carried disease-causing variants of SCID-X1 confirmed by prenatal diagnosis was born, further verifying our successful application of PGT in preventing mutated allele transmission for this SCID family.

6.
Reprod Sci ; 28(12): 3571-3578, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34076870

RESUMEN

Methylmalonic acidemia combined with homocysteinemia and cobalamin C type (MMA-CblC, MIM # 277400) is a rare inherited disease with cobalamin metabolic disorder, which are caused by deficiency in the MMACHC gene. A couple with a proband child carried with compound heterozygous mutations of MMACHC (c.609G>A and c.567 dup T, NM_015506) sought for assisted reproductive technology to avoid the transmission of pathogenic genetic variants and unnecessary induction of labor. Thus, in vitro fertilization (IVF), preimplantation genetic testing (PGT), and prenatal genetic diagnosis were applied to fulfill this clinical demand. In this study, seven embryos were biopsied and carried out whole-genome amplification using multiple annealing and looping-based amplification cycle (MALBAC) method. Sanger sequencing together with copy number variation (CNV) analysis and single-nucleotide polymorphism (SNP) haplotyping was conducted to detect the mutated alleles and chromosomal abnormalities simultaneously. Three embryos (E07, E06, and E02) were confirmed without CNVs and inherited mutations at MMACHC gene. Embryo E07 with the best embryo ranking of 5BB was selected preferentially to transfer which led to a successful pregnancy and an unaffected live birth. Prenatal genetic diagnosing with amniotic fluid cells, Sanger sequencing with cord blood cells, and neonate MMA screening further verified our successful application of PGT in preventing mutated allele transmission for this rare inherited disease.


Asunto(s)
Pruebas Genéticas/métodos , Homocistinuria/genética , Nacimiento Vivo/genética , Tamizaje Neonatal/métodos , Diagnóstico Preimplantación/métodos , Enfermedades Raras/genética , Deficiencia de Vitamina B 12/congénito , Adulto , Preescolar , Transferencia de Embrión/métodos , Femenino , Homocistinuria/diagnóstico , Humanos , Recién Nacido , Masculino , Linaje , Embarazo , Enfermedades Raras/diagnóstico , Análisis de Secuencia de ADN/métodos , Deficiencia de Vitamina B 12/diagnóstico , Deficiencia de Vitamina B 12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...